Nonlinear Fractional Schrödinger Equations in One Dimension

نویسندگان

  • ALEXANDRU D. IONESCU
  • FABIO PUSATERI
چکیده

We consider the question of global existence of small, smooth, and localized solutions of a certain fractional semilinear cubic NLS in one dimension, i∂tu − Λu = c0|u| 2 u + c1u 3 + c2uu 2 + c3u 3 , Λ = Λ(∂x) = |∂x| 1 2 , where c0 ∈ R and c1, c2, c3 ∈ C. This model is motivated by the two-dimensional water wave equation, which has a somewhat similar structure in the Eulerian formulation, in the case of irrotational flows. We show that one cannot expect linear scattering, even in this simplified model. More precisely, we identify a suitable nonlinear logarithmic correction, and prove global existence and modified scattering of solutions. CONTENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soliton Dynamics for Fractional Schrödinger Equations

We investigate the soliton dynamics for the fractional nonlinear Schrödinger equation by a suitable modulational inequality. In the semiclassical limit, the solution concentrates along a trajectory determined by a Newtonian equation depending of the fractional diffusion parameter.

متن کامل

SOLVING FRACTIONAL NONLINEAR SCHR"{O}DINGER EQUATIONS BY FRACTIONAL COMPLEX TRANSFORM METHOD

In this paper, we apply fractional complex transform to convert the fractional nonlinear Schr"{o}dinger equations to the nonlinear Schr"{o}dinger equations.  

متن کامل

Infinitely Many Solutions for Cubic Nonlinear Schrödinger Equations in Dimension Four

We extend Chen, Wei, and Yan’s constructions of families of solutions with unbounded energies ([5]) to the case of cubic nonlinear Schrödinger equations in the optimal dimension four.

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Theory of Hybrid Fractional Differential Equations with Complex Order

We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012